If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+a^2=25
We move all terms to the left:
a^2+a^2-(25)=0
We add all the numbers together, and all the variables
2a^2-25=0
a = 2; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·2·(-25)
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{2}}{2*2}=\frac{0-10\sqrt{2}}{4} =-\frac{10\sqrt{2}}{4} =-\frac{5\sqrt{2}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{2}}{2*2}=\frac{0+10\sqrt{2}}{4} =\frac{10\sqrt{2}}{4} =\frac{5\sqrt{2}}{2} $
| 4/3n+4=-4 | | 8-(6-6n)+18n=-8+18(n+1) | | -7n+3=11 | | 14c=5 | | 11r=8 | | 18w=17 | | (9-x)/6=24/2 | | 2b/3-b/2-1/6=0 | | 2x-1=2x/3 | | -4z−8=4z+8 | | 3x-x=9•2 | | 112k=224 | | -4b=-9b+10 | | R-6=4-r | | 4r+2=r/8 | | -m+10=m-2 | | 5(8-x)+36=102-2(3x+24) | | 10+5c=45/5c | | -p=-3p-10 | | 100=5(20)+b | | 27=x-(-16) | | 6-7k=-10k | | 6-7k=10k | | 3(x-1)+2(x+6=54 | | -7r=-3-8r | | A+63a=512 | | 12p=133 | | 5m^2+25-180=0 | | 20^2+(7+x)^2=25^2 | | -5p=-4p+6 | | K+k2+k4=4k | | -2v=-3v+5 |